A Framework for Learning Predictive Structures from Multiple Tasks and Unlabeled Data

نویسندگان

  • Rie Kubota Ando
  • Tong Zhang
چکیده

One of the most important issues in machine learning is whether one can improve the performance of a supervised learning algorithm by including unlabeled data. Methods that use both labeled and unlabeled data are generally referred to as semi-supervised learning. Although a number of such methods are proposed, at the current stage, we still don’t have a complete understanding of their effectiveness. This paper investigates a closely related problem, which leads to a novel approach to semi-supervised learning. Specifically we consider learning predictive structures on hypothesis spaces (that is, what kind of classifiers have good predictive power) from multiple learning tasks. We present a general framework in which the structural learning problem can be formulated and analyzed theoretically, and relate it to learning with unlabeled data. Under this framework, algorithms for structural learning will be proposed, and computational issues will be investigated. Experiments will be given to demonstrate the effectiveness of the proposed algorithms in the semi-supervised learning setting.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predictive Power of Involvement Load Hypothesis and Technique Feature Analysis across L2 Vocabulary Learning Tasks

Involvement Load Hypothesis (ILH) and Technique Feature Analysis (TFA) are two frameworks which operationalize depth of processing of a vocabulary learning task. However, there is dearth of research comparing the predictive power of the ILH and the TFA across second language (L2) vocabulary learning tasks. The present study, therefore, aimed to examine this issue across four vocabulary learning...

متن کامل

Predictive Power of Involvement Load Hypothesis and Technique Feature Analysis across L2 Vocabulary Learning Tasks

Involvement Load Hypothesis (ILH) and Technique Feature Analysis (TFA) are two frameworks which operationalize depth of processing of a vocabulary learning task. However, there is dearth of research comparing the predictive power of the ILH and the TFA across second language (L2) vocabulary learning tasks. The present study, therefore, aimed to examine this issue across four vocabulary learning...

متن کامل

Exploiting Ontology Structures and Unlabeled Data for Learning

We present and analyze a theoretical model designed to understand and explain the effectiveness of ontologies for learning multiple related tasks from primarily unlabeled data. We present both information-theoretic results as well as efficient algorithms. We show in this model that an ontology, which specifies the relationships between multiple outputs, in some cases is sufficient to completely...

متن کامل

Semi-supervised Learning for Multi-target Regression

The most common machine learning approach is supervised learning, which uses labeled data for building predictive models. However, in many practical problems, the availability of annotated data is limited due to the expensive, tedious and time-consuming annotation procedure. At the same, unlabeled data can be easily available in large amounts. This is especially pronounced for predictive modell...

متن کامل

Towards Self-Exploring Discriminating Features

Many visual learning tasks are usually confronted by some common diiculties. One of them is the lack of supervised information, due to the fact that labeling could be tedious, expensive or even impossible. Such scenario makes it challenging to learn object concepts from images. This problem could be alleviated by taking a hybrid of labeled and unlabeled training data for learning. Since the unl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Machine Learning Research

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2005